skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Keith, John_A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mixed solvents (i.e., binary or higher order mixtures of ionic or nonionic liquids) play crucial roles in chemical syntheses, separations, and electrochemical devices because they can be tuned for specific reactions and applications. Apart from fully explicit solvation treatments that can be difficult to parameterize or computationally expensive, there is currently no well-established first-principles regimen for reliably modeling atomic-scale chemistry in mixed solvent environments. We offer our perspective on how this process could be achieved in the near future as mixed solvent systems become more explored using theoretical and computational chemistry. We first outline what makes mixed solvent systems far more complex compared to single-component solvents. An overview of current and promising techniques for modeling mixed solvent environments is provided. We focus on so-called hybrid solvation treatments such as the conductor-like screening model for real solvents and the reference interaction site model, which are far less computationally demanding than explicit simulations. We also propose that cluster-continuum approaches rooted in physically rigorous quasi-chemical theory provide a robust, yet practical, route for studying chemical processes in mixed solvents. 
    more » « less
  2. Abstract Alchemical perturbation density functional theory (APDFT) has promise for enabling computational screening of hypothetical catalyst sites. Here, we analyze errors in first order APDFT calculation schemes for binding energies of CHx, NHx, OHx, and OOH adsorbates over a range of different coverages on hypothetical alloys based on a Pt(111) reference system. We then train three different support vector regression machine learning models that correct systematic APDFT prediction errors for each of the three classes of carbon, nitrogen, and oxygen based adsorbates. While uncorrected first order APDFT alone approximates accurate adsorbate binding energies on up to 36 hypothetical alloys based on a single Kohn–Sham DFT calculation on a 3 × 3 unit cell for Pt(111), the machine learning‐corrected APDFT extends this number to more than 20,000 and provides a recipe for developing other machine learning‐based APDFT models. 
    more » « less
  3. Abstract Direct electrochemical production of dissolved ozone could potentially provide economic wastewater treatment and sanitation or a valuable chemical oxidant. Although Ni‐Sb‐SnO2electrocatalysts have the highest known faradaic efficiencies for electrochemical ozone production, the activity and selectivity are not yet sufficient for commercial implementation. This work finds that co‐doping Ni and Gd increases the ozone selectivity by a factor of three over Ni alone. These findings are the first demonstration of an active dopant other than Ni in SnO2. Electrochemical and physical characterization show that trends in ozone activity are caused by chemical catalysis, not morphology effects, and that conduction band alignment is not a catalytic descriptor for the system. Selective radical quenching experiments and quantum chemistry calculations of thermodynamic energies suggest that the kinetic barriers to form solution‐phase intermediates are important for understanding the role of dopants in electrochemical ozone production. 
    more » « less
  4. Abstract Kohn–Sham density functional theory (DFT)‐based searches for hypothetical catalysts are too computationally demanding for wide searches through diverse materials space. Here, the accuracy of computational alchemy schemes on carbides, nitrides, and oxides is assessed. With a single set of reference DFT calculations, computational alchemy approximates adsorbate binding energies (BEs) on a large number of hypothetical catalysts surfaces with negligible computational cost. Analogous to previous studies on metal alloys, computational alchemy predicts adsorbate BEs on rocksalt TiC(111), TiN(100), and TiO(100) materials, which have no bandgap, in close agreement with DFT results (with mean unsigned errors up to 0.33 eV). In contrast, it is found that semiconducting systems such as rutile TiO2(110), rutile SnO2(110), and rocksalt ZnO(100) can present more significant challenges. This work identifies these challenges being linked to the density of states at the Fermi level and by adding Pt dopants in the surface layer of TiO2, it is shown that computational alchemy can become more reliable with non‐transition metal systems. This remedy provides insight that promotes computational alchemy for broad searches for catalyst active sites through materials space beyond transition metal alloys. 
    more » « less